

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Internet <u>www.etadanmark.dk</u> Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-21/0360 of 2022/07/08

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	LIGNO acoustic panels
Product family to which the above construction product belongs:	Cross laminated timber element
Manufacturer:	LIGNOTREND GmbH & Co. KG Landstrasse 25 DE-79809 Weilheim-Bannholz Telephone 49 (0) 77 55 / 92 00-0 Internet www.lignotrend.com
Manufacturing plant:	LIGNOTREND Produktions GmbH Landstrasse 25 DE-79809 Weilheim-Bannholz
This European Technical Assessment contains:	23 pages including 5 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of:	EAD 130005-00-0304 - Solid wood slab element for use as structural element in buildings
This version replaces:	The ETA with the same number issued on 2021-06- 25

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

LIGNO acoustic panels is a cross laminated timber element made of softwood consisting of 3 - 6 layers. The elements are plane.

Individual layers consist of parallel oriented lamellae made of strength graded boards. The boards may be resawn during the production process resulting in boards or strips with smaller widths.

The components and the system setup of the product are given in Annex 1, Figure 1 and Figure 2.

The application of chemical substances (wood preservatives and flame retardants) is not subject of the European technical assessment.

Wood species are softwoods spruce, fir, pine, larch and Douglas fir.

2 Specification of the intended use in accordance with the applicable European Assessment Document (hereinafter EAD)

The cross laminated timber is intended to be used as a structural or non-structural element in buildings and timber structures. The cross laminated timber shall be subjected to static and quasi static actions only.

The cross laminated timber is intended to be used in service classes 1 and 2 according to EN 1995-1-1. Members which are directly exposed to the weather shall be provided with an effective protection for the cross laminated timber element in service.

The performances given in Section 3 are only valid if the cross laminated timber elements are used in compliance with the specifications and conditions given in Annex 1 to 5.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the cross laminated timber element of at least 50 years. The real working life may be, in normal conditions, considerably longer without major degradation affecting the essential requirements of the works.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or the Technical Assessment Body but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Characteristic	Assessment of characteristic							
3.1 Mechanical resistance and stability (BWR1) ¹⁾								
Bending ²⁾	Annex 3							
Tension and compression ²⁾	Annex 3							
Shear ²⁾	Annex 3							
Embedment strength	Annex 3							
Creep and duration of the load	Annex 3							
Dimensional stability	Annex 3							
In-service environment	Annex 3							
Bond integrity	Annex 3							
3.2 Safety in case of fire (BWR2)								
Reaction to fire	Annex 3							
Resistance to fire	Annex 3							
3.3 Hygiene, health and the environment (BWR3)								

Content, emission and/or release of dangerous substances	dangerous substances > 0.1 wt. % are used in the product assessed by the present ETA. Only wood-based panels which can be assigned to formaldehyde class E1 according to EN 13986 shall be used. The use of wood preservatives and flame retardants is excluded. The chemical composition of the adhesives for gluing the boards and the finger joints of the individual boards has to be in compliance with the chemical composition deposited at ETA Danmark A/S.						
Water vapour permeability – Water vapour transmission	No performance assessed						
3.4 Safety in use (BWR4)							
Impact resistance	Annex 3						
3.5 Protection against noise (BWR5) Airborne sound insulation Impact sound insulation Sound absorption	No performance assessed No performance assessed Annex 3						
3.6 Energy economy and heat retention (BWR6)	No performance assessed						

1) This characteristic also relates to BWR 4

2) Load bearing capacity and stiffness regarding mechanical actions perpendicular to and in plane of the cross laminated timber element.

3.7 Manufacturing

The cross laminated timber elements are manufactured in accordance with the provisions of this European technical assessment using the automated manufacturing process in accordance with the technical documentation.

The layers shall be bonded together to the required thickness of the cross laminated timber.

Specifications of the used boards are given in Annex 2. Boards are visually or machine strength graded. Only technically dried wood shall be used.

The boards or the basic elements may be connected by finger joints in longitudinal direction according to EN 14080. There shall be no butt joints.

The cross laminated timber elements correspond to the specifications given in Annexes 1 to 3 of this European technical assessment. The material characteristics, dimensions and tolerances of the cross laminated timber elements not indicated in these Annexes are given in the technical documentation of the European technical assessment.

3.8 Design

The European Technical Assessment only applies to the manufacture and use of cross laminated timber elements. Verification of stability of the building while using the cross laminated timber elements is not subject of the European Technical Assessment.

The following conditions shall be observed:

- Design of the cross laminated timber elements is carried out under the responsibility of an engineer experienced in such products.
- Design of the works shall account for the protection of the cross laminated timber elements.
- The cross laminated timber elements are installed correctly.

Design of the cross laminated timber element can be performed according to EN 1995-1-1, taking into account Annexes 2 to 5 of the European Technical Assessment. Standards and regulations valid in the place of use shall be considered.

4 Attestation and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the Decision 97/176/EC of the European Commission, as amended by 2001/596/EC, the system of assessment and verification of constancy of performance (see Annex V to the regulation (EU) No 305/2011) is System 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2022-07-08 by

Thomas Bruun Managing Director, ETA-Danmark

Annex 1 Construction of the wood slab elements "Lignotrend LIGNO acoustic panels" (example)

Figure 1: Principle structure of the cross laminated timber (five layers)

Figure 2: Principle cross laminated timber element (three layers)

Figure 3 LIGNO Panels

Figure 4 LIGNO Panels

Characteristic	Dimensions and specifications
Cross laminated timber element	
Thickness	15 to 66 mm
Tolerance in thickness	$\pm 1 \text{ mm}$
Width	≤ 1,25 m
Tolerance in width	± 1 mm
Length	≤ 8,00 m
Tolerance in length	$\pm 3 \text{ mm}$
Number of layers	$2 \le n \le 6$
Maximum number of consecutive layers	2
having the same grain direction	
Maximum width of gaps between adjacent	
boards in longitudinal layers	150 mm
in cross layers	68 mm
Boards	
Material	Softwood
	Not resawn or resawn non-load-bearing boards:
Strength class according to FN 338	C16, C24, C30
Strength class according to EN 558	Resawn and knot-free boards:
	\geq C30 or D30
Thickness	
in longitudinal layers	5 to 40 mm
in cross layers	5 to 40 mm
Width	10 to 68 mm
Ratio width to thickness of the cross-layer	≥ 1:2
boards or strips	
Moisture of wood according to EN 13183-2	8±2; 9±2, 10±2
	Within one cross laminated timber element only one of the
	specified moisture ranges shall be applied
Finger joints	EN 14080

Annex 2 Dimensions and specifications of the cross laminated timber

Annex 3 Essential Requirements of the cross laminated timber

ER	Requirement	Verification method Class / Use category / value										
	Mechanical resistance and	stability	-									
	Bending, tension and compr	ession strength and stiffness:										
	For the calculation, the char	acteristic strength and stiffness values	s of homogeneo	ous glulam according								
	to EN 14080 shall be used ta	aking into consideration the definition	is in annex 2.									
	For boards C16, the characte	eristic strength and stiffness values of	GL 20h, for bo	oards C24, the								
	characteristic strength and st	tiffness values of GL 24h, and for boa	ards C30 or D30	0, the characteristic								
	strength and stiffness values	of GL 28h shall be used.										
	In addition, the following va	lues apply:										
	Mechanical actions in	Shear strength for the calculation										
	plane of the cross	with the gross cross section	f _{v,k}	as given in								
1	laminated timber	(5% - fractile)		Annex 5								
		Rolling shear strength		as given in								
	Mechanical actions	(5% - fractile)	f _{r,k}	Figure 3								
	perpendicular to the	Rolling shear modulus		as given in								
	cross laminated timber	(mean value)	G _{r,mean}	Figure 4								
	For references regarding the	alculation see annexes 4 to 5. National regulations might have to be										
	followed.		C	C								
	Use of fasteners	According to EN 1995-1-1										
	Creep and duration of load	According to EN 1995-1-1										
	Dimensional stability	Moisture content during use shall n	ot change to su	ch extent that adverse								
		deformations can occur.										
	Behaviour in case of fire											
	Reaction to fire	1		2 10 1 11								
	Solid wood panels except	Commission Decision	as given in figures 5 to 7									
2	Floorings	2005/610/EC	Euroclass D ₈ -s1									
	Resistance to fire											
			$B_0 = 0.65 \text{ mm}$	n/min								
	Charring rate	EN 1995-1-2	$\beta_0 = 0.05 \text{ mm/min}$									
	Hygiene, health and the en	vironment										
	Vapour permeability µ	No performance assessed										
3	Content of dangerous	EAD 120005 00 0240										
	substances	EAD 130005-00-0340	See clause 3									
	Safety in use											
4	Impact resistance	Soft body resistance is assumed to	be fulfilled for	walls with a								
	Impact resistance	minimum of 3 layers and minimum	thickness of 33	3 mm.								
	Protection against noise											
5	Airborne sound insulation	No performance assessed										
	Impact sound insulation	No performance assessed										
	Sound absorption	As given in table 1-8										
	There all a set it of	No porformance accessed										
6	I nermal conductivity λ	No performance assessed										
	Air tightness	No performance assessed										
	i nermai inertia c _p	no performance assessed										

Figure 3: Rolling Shear Strength $f_{r,k}$

Figure 4: Rolling Shear Modulus G_{r,mean}

Timber Longitudinal Timber transversal Wood fibre Single-layer board

Figure 5: Reaction to fire performance For surface application with or without any joints

Figure 6: Reaction to fire performance For surface application with or without any joints

Timber Longitudinal Timber transversal Wood fibre Plywood + oak veneer

Subject: LIGNO Acoustic light 35, 33	Load bearing structure							
Application: Acoustic absorption with cavity	£							

installed in front of h= 30 mm cavity

Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz 2	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,60	0,10	0,75	0,73	С	MH	0,10	0,30	0,75	0,95	0,90	0,75	BAE 14-330-27
625-18-6	0,60	0,10	0,75	0,73	С	MH	0,10	0,30	0,75	0,95	0,90	0,70	BAE 17-329-02_ STN07.2018
625-20-4	0,65	0,10	0,70	0,72	С	М	0,10	0,35	0,80	0,95	0,80	0,60	BAE 14-330-28_ STN07.2018
625-23-8	0,60	0,10	0,75	0,73	С	MH	0,10	0,30	0,75	0,95	0,90	0,75	BAE 17-329-10_ STN07.2018
625-12n25-4	0,65	0,15	0,75	0,74	С	м	0,15	0,35	0,75	0,95	0,85	0,70	BAE 14-330-29
625-18n38-6	0,65	0,10	0,75	0,73	C	М	0,10	0,35	0,80	0,95	0,80	0,65	BAE 17-329-04

installed in front of h= 100 mm cavity

Profile	αw	αρ	NRC	SAA	SAK	Form. 12	5 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,80	0,25	0,80	0,81	В	-	0,25	0,60	0,80	0,85	0,90	0,70	BAE 18-311-01
625-18-6	0,85	0,25	0,80	0,80	В		0,25	0,65	0,80	0,90	0,90	0,70	BAE 18-311-04
625-23-8	0,80	0,30	0,80	0,79	В	-	0,30	0,60	0,80	0,90	0,90	0,70	BAE 18-311-06
625-20-4	0,80	0,30	0,75	0,77	В	- C	0,30	0,60	0,80	0,85	0,80	0,60	BAE 18-311-02

installed in front of h= 150 mm cavity

Profile	αw	αp	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,75	0,45	0,70	0,72	С		0,45	0,60	0,75	0,80	0,75	0,65	K_B 6435-09-1

installed in front of h= 200 mm cavity

Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,80	0,40	0,80	0,80	В	-	0,40	0,75	0,80	0,75	0,90	0,70	K_B 6827-10-2
625-20-4	0,75	0,50	0,80	0,78	В	23	0,50	0,70	0,75	0,85	0,80	0,55	BAE 14-330-04_ STN07.2018
625-12n25-4	0,75	0,45	0,80	0,80	С	1.00	0,45	0,70	0,75	0,85	0,85	0,60	BAE 14-330-03

installed in front of h= 400 mm cavity

. 1	Profile	αw	αρ	NRC	SAA	SAK	Form. 125	Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
6	25-12-4	0,80	0,60	0,80	0,81	В	- 0	,60	0,70	0,70	0,90	0,95	0,70	BAE 14-330-01

 Table 1:
 Acoustic absorption with cavity

Subject: LIGNO Acoustic light / Sport 3G_33	Load bearing structure	
Application: Acoustic absorption with cavity		

installed in front of h= 30 mm cavity

625-12-4 0,60 0,10 0,70 0,68 C MH 0,10 0,35 0,60 0,85 0,90 0,70 BAE 18-32 625-22n40-4 0,60 0,15 0,65 0,67 C M 0,15 0,40 0,70 0,90 0,70 0,45 BAE 19-32	Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-22n40-4 0,60 0,15 0,65 0,67 C M 0,15 0,40 0,70 0,90 0,70 0,45 BAE 19-323	625-12-4	0,60	0,10	0,70	0,68	С	MH	0,10	0,35	0,60	0,85	0,90	0,70	BAE 18-323-03
	625-22n40-4	0,60	0,15	0,65	0,67	С	М	0,15	0,40	0,70	0,90	0,70	0,45	BAE 19-323-09

installed in front of h= 100 mm cavity

αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
0,70	0,25	0,70	0,70	С	-	0,25	0,50	0,65	0,80	0,90	0,70	BAE 18-323-04
0,65	0,30	0,70	0,69	С	222	0,30	0,45	0,65	0,85	0,80	0,50	BAE 17-345-03
0,70	0,25	0,70	0,70	С	8.73	0,25	0,50	0,60	0,85	0,85	0,60	BAE 18-311-08
0,65	0,25	0,70	0,67	С	24	0,25	0,45	0,65	0,85	0,70	0,50	BAE 19-323-19
	αw 0,70 0,65 0,70 0,65	αw αp 0,70 0,25 0,65 0,30 0,70 0,25 0,65 0,25	αw αp NRC 0,70 0,25 0,70 0,65 0,30 0,70 0,70 0,25 0,70 0,65 0,25 0,70	αw αp NRC SAA 0,70 0,25 0,70 0,70 0,65 0,30 0,70 0,69 0,70 0,25 0,70 0,70 0,65 0,25 0,70 0,70 0,65 0,25 0,70 0,67	αw αp NRC SAA SAK 0,70 0,25 0,70 0,70 C 0,65 0,30 0,70 0,69 C 0,70 0,25 0,70 0,70 C 0,70 0,25 0,70 0,70 C 0,65 0,25 0,70 0,67 C	αw αp NRC SAA SAK Form. 0,70 0,25 0,70 0,70 C - 0,65 0,30 0,70 0,69 C - 0,70 0,25 0,70 0,70 C - 0,70 0,25 0,70 0,70 C - 0,65 0,25 0,70 0,67 C -	αw αp NRC SAA SAK Form. 125 Hz 0,70 0,25 0,70 0,70 C - 0,25 0,65 0,30 0,70 0,69 C - 0,30 0,70 0,25 0,70 0,70 C - 0,30 0,70 0,25 0,70 0,70 C - 0,25 0,65 0,25 0,70 0,67 C - 0,25	αw αp NRC SAA SAK Form. 125 Hz 250 Hz 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,30 0,70 0,69 C - 0,30 0,45 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,25 0,70 0,67 C - 0,25 0,45	αw αp NRC SAA SAK Form. 125 Hz 250 Hz 500 Hz 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,65 0,30 0,70 0,69 C - 0,30 0,45 0,65 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,60 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,60 0,65 0,25 0,70 0,67 C - 0,25 0,45 0,65	αw αp NRC SAA SAK Form. 125 Hz 250 Hz 500 Hz 1 kHz 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,80 0,65 0,30 0,70 0,69 C - 0,30 0,45 0,65 0,85 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,85 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,60 0,85 0,65 0,25 0,70 0,67 C - 0,25 0,45 0,65 0,85	αw αp NRC SAA SAK Form. 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,80 0,90 0,65 0,30 0,70 0,69 C - 0,30 0,45 0,65 0,85 0,80 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,85 0,85 0,65 0,25 0,70 0,70 C - 0,25 0,50 0,60 0,85 0,85 0,65 0,25 0,70 0,67 C - 0,25 0,45 0,65 0,85 0,70	αw αp NRC SAA SAK Form. 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,80 0,90 0,70 0,65 0,30 0,70 0,69 C - 0,30 0,45 0,65 0,80 0,90 0,70 0,70 0,25 0,70 0,70 C - 0,30 0,45 0,65 0,80 0,90 0,70 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,85 0,80 0,50 0,70 0,25 0,70 0,70 C - 0,25 0,50 0,65 0,85 0,70 0,50 0,65 0,25 0,70 0,67 C - 0,25 0,45 0,65 0,85 0,70 0,50

installed in front of h= 200 mm cavity

Profile	αw	αp	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,70	0,40	0,70	0,70	С		0,40	0,50	0,60	0,80	0,90	0,70	BAE 18-323-08
625-20-4	0,60	0,30	0,65	0,66	С	М	0,30	0,40	0,55	0,85	0,80	0,60	BAE 19-323-27
625-22n40-4	0,65	0,35	0,65	0,67	С	-	0,35	0,45	0,60	0,85	0,70	0,50	BAE 19-323-26

Table 2: Acoustic absorption with cavity

Page 18 of 23 of European Technical Assessment no. ETA-21/0360, issued on 2022-07-08

ibject: LIGN	Acou	stic lig	ht 35_3	3						Load	bearing	structure	1
plication: Ac	oustic	absorp	otion wi	ith extr	a abs	orber	(hemp)						
stalled in from	nt of h=	30 mm	cavity, t	acked	with t=	30 mr	n hemp						
Profile	αw	αρ	NRC	SAA	SAK	Form	. 125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,85	0,20	0,85	0,83	В	1753	0,20	0,55	0,85	0,95	0,90	0,75	BAE 14-330-25
625-18-6	0,80	0,25	0,80	0,78	В	-	0,25	0,55	0,75	0,90	0,90	0,80	BAE 14-330-23 STN07.2018
625-20-4	0,75	0,20	0,80	0,80	C		0,20	0,55	0,90	0,95	0,80	0,60	BAE 14-330-24 STN07.2018
625-12n25-4	0,80	0,25	0,80	0,81	В	1.00	0,25	0,55	0,85	0,95	0,90	0,65	BAE 14-330-21
Profile	αw	αp	NRC	SAA	SAK	Form	. 125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
023 12 4	0,05	0,40	0,05	0,00	U		0,40	0,05	0,00	0,50	0,50	0,75	DAL 10 311 13
talled in from	nt of h=	150 mn	n cavity,	backed	d with t	= 30 m	nm hemp)					
Profile	αw	αp	NRC	SAA	SAK	Form	. 125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,80	0,55	0,75	0,75	В	1.0	0,55	0,65	0,75	0,80	0,75	0,70	K_B 6435-09-1
nstalled in from	nt of h=	150 mn	n cavity,	backed	1 with 1	= 30 m	n <mark>m hemp</mark>)					
625-12-4	0,80	0,55	0,75	0,75	В		0,55	0,65	0,75	0,80	0,75	0,70	K_B 6435-09-1
istalled in from	t of h=	200 mn	n cavity,	backed	d with t	= 30 m	nm hemp)	0,15	0,00	0,15	0,70	
Profile	αw	αp	NRC	SAA	SAK	Form	.125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,80	0,55	0,85	0,83	В	-	0,55	0,80	0,75	0,85	0,90	0,70	BAE 14-330-11
625-20-4	0.75	0.55	0.80	0.80	C	1	0.55	0.80	0.75	0.90	0.80	0.55	BAF 14-330-09

 Table 3:
 Acoustic absorption with extra absorber (hemp)

0,70

0,75

0,90

0,85

0,65

0,50

625-12n25-4 0,80

0,50

0,80

0,80

В

-

STN07.2018

BAE 14-330-08

Subject: LIGNO Acoustic light 35 33	Load bearing structure
Application: Acoustic absorption with extra absorber (fleece)	
installed in front of h= 100 mm cavity, backed with t= 50 mm fleece	2

	Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
- 287 - 197	625-12-4	0,85	0,55	0,85	0,85	В	0	0,55	0,75	0,80	0,90	0,95	0,70	BAE 18-311-10
8	625-23-8	0,85	0,55	0,85	0,84	в	0	0,55	0,75	0,80	0,90	0,90	0,75	BAE 18-311-12
	625-20-4	0,80	0,55	0,85	0,84	в	0	0,55	0,80	0,80	0,90	0,85	0,60	BAE 18-311-11

installed in front of h= 100 mm cavity, backed with t=100 mm fleece

Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,85	0,70	0,85	0,83	В	0	0,70	0,75	0,80	0,90	0,95	0,75	BAE 18-311-14
625-23-8	0,85	0,75	0,80	0,82	В	0	0,75	0,70	0,75	0,90	0,90	0,75	BAE 18-311-16
625-20-4	0,80	0,75	0,80	0,82	В	0	0,75	0,75	0,80	0,90	0,85	0,60	BAE 18-311-15

 Table 4:
 Acoustic absorption with extra absorber (fleece)

Application: D	irectly	Instal	led						Load	bearin	g struct	ure	
								88. JAN					
							ca. 7n	nm cavity in	the element				
nstalled withou	ut cavity	y, only	on level	timber	constr	uction							
Profile	αw	αρ	NRC	SAA	SAK F	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,40	0,05	0,55	0,57	D	MH	0,05	0,10	0,40	0,90	0,90	0,75	BAE 14-330-20
625-18-6	0,45	0,05	0,65	0,64	D	MH	0,05	0,15	0,55	0,95	0,90	0,75	BAE 14-330-15 STN07.2018
625-20-4	0,40	0,05	0,55	0,56	D	мн	0,05	0,10	0,45	0,95	0,70	0,55	BAE 14-330-17 STN07.2018
625-12n25-4	0,40	0,05	0,60	0,60	D	МН	0,05	0,10	0,50	0,95	0,85	0,65	BAE 14-330-18
			Ta	ble 5:	A	coust	ic abso	rption	directly	' instal	led		
								5					
Subject: LIGN	0 Acou	istic lig	jht 35_	33		12			I	.oad bea	aring str	ructure	
Subject: LIGN Application: A Imineral wool	0 Acou coustic	istic lig absor	ption v	,33 vith extr	ra abs	orber	-	WW###		.oad bea	aring sti		
Subject: LIGN Application: A mineral wool	0 Acou coustic)	istic lig absor	ght 35_ ption v	,33 vith extr	ra abs	orber	-			oad bea	aring str	ructure	
Subject: LIGN Application: A mineral wool nstalled in fro	0 Acou coustic) nt of h=	istic lig absor 30 mm	ght 35_ ption v	,33 vith extr	ra abs with t=	orber = 30 mn	- n mineral	wool (gl;		oad bea	ering str +-	ructure	
Subject: LIGN Application: A mineral wool nstalled in fro Profile	0 Acou coustic) nt of h= aw	astic lig absor 30 mm αp	pht 35_ ption v cavity, NRC	.33 vith extr backed SAA	ra abs with t= SAK	orber = 30 mm : Form.	n mineral 125 Hz	wool (gla	ass wool)	oad bea	aring str +	z 4 kHz	Testing Repor
Subject: LIGN Application: A mineral wool nstalled in fro <u>Profile</u> 625-12-4	0 Acou coustic) nt of h= <u>aw</u> 0,90	stic lig absor 30 mm αp 0,25	ption v ption v cavity, NRC 0,85	33 vith extr backed SAA 0,85	with t=	orber = 30 mm : Form. -	n mineral 125 Hz 0,25	wool (gla 250 Hz 0,70	L 2014 ass wool) z 500 H 0,85	oad bea	2 kH	z 4 kHz	Testing Repor BAE 18-323-0
Subject: LIGN Application: A mineral wool nstalled in from Profile 625-12-4	0 Acou coustic) nt of h= <u>aw</u> 0,90	astic lig absor 30 mm αp 0,25	ption v cavity, NRC 0,85	33 vith extr backed SAA 0,85	ra abs with t= SAK A	orber = 30 mm . Form. -	n mineral 125 Hz 0,25	wool (gla 250 H; 0,70	L ass wool) z 500 H 0,85	oad bea	2 kH	z 4 kHz	Testing Repor BAE 18-323-0
Subject: LIGN Application: A mineral wool nstalled in fro <u>Profile</u> 625-12-4 nstalled in fro	0 Acou coustic) nt of h= <u>aw</u> 0,90 nt of h=	astic lig absor 30 mm 0,25 100 m	pht 35_ ption v cavity, NRC 0,85 m cavity	33 vith extr backed SAA 0,85 r, backee	with t= SAK A	orber = 30 mm - - t= 30 m	n mineral 125 Hz 0,25 m minera	wool (gla 250 Hz 0,70	L 3334452233 ass wool) z 500 H 0,85 lass wool	oad bea	2 kH	z 4 kHz	Testing Repor BAE 18-323-0
Subject: LIGN Application: A mineral wool nstalled in fro Profile 625-12-4 nstalled in fro Profile	10 Acou coustic) nt of h= <u>aw</u> 0,90 nt of h= aw	astic lig absor 30 mm 0,25 100 m αp	ption v cavity, NRC 0,85 m cavity	33 vith extr backed SAA 0,85 v, backed	with t= SAK A d with t	orber = 30 mm : Form. - t= 30 m Form.	n mineral 125 Hz 0,25 m minera	wool (gl; 250 H; 0,70	L 2 500 H 0,85 Lass wool) 2 500 H 0,85 Lass wool	z 1 kHz 0,99	2 kH	z 4 kHz	Testing Repor BAE 18-323-0
ubject: LIGN pplication: A mineral wool nstalled in fro <u>Profile</u> 625-12-4 nstalled in fro <u>Profile</u> 625-12-4	0 Acou coustic) nt of h= <u>aw</u> 0,90 nt of h= <u>aw</u> 0,85	astic lig absor 30 mm 0,25 100 m αp 0,40	pht 35_ ption v cavity, <u>NRC</u> 0,85 m cavity <u>NRC</u> 0,85	33 vith extr backed SAA 0,85 7, backed SAA 0,83	with t= SAK A d with t SAK B	orber = 30 mm - t= 30 m Form. -	n mineral 125 Hz 0,25 m minera 125 Hz 0,40	wool (gla 250 H: 0,70 il wool (g : 250 H 0,70	L ass wool) z 500 H 0,85 Lass wool z 500 H 0,80	0ad bea	2 kH 2 kH 5 0,95 Hz 2 kHz 0 0,95	z 4 kHz 2 4 kHz 3 0,75 2 4 kHz 5 0,75	Testing Repor BAE 18-323-0 2 Testing Repor BAE 18-323-0
ubject: LIGN pplication: A mineral wool nstalled in fro <u>Profile</u> 625-12-4 nstalled in fro <u>Profile</u> 625-12-4	0 Acou coustic) nt of h= aw 0,90 nt of h= aw 0,85	astic lig absor 30 mm 0,25 100 mi αp 0,40	n cavity, NRC 0,85 m cavity NRC 0,85	33 vith extr backed SAA 0,85 r, backed SAA 0,83	with t= SAK A d with t SAK B	orber = 30 mm - t= 30 m Form. -	n mineral 125 Hz 0,25 m minera 125 H; 0,40	wool (gla 250 Ha 0,70 al wool (g 250 H 0,70	L 3334462233 ass wool) z 500 H 0,85 Lass wool z 500 H 0,80	0000 bea 2 1 kHz 0,95 1 12 1 kHz 0,95	2 kH 2 kH 2 kH 2 0,95	z 4 kHz 2 4 kHz 5 0,75 2 4 kHz	Testing Repor BAE 18-323-0 E Testing Repor BAE 18-323-0
subject: LIGN spplication: A mineral wool nstalled in fro <u>Profile</u> 625-12-4 nstalled in fro <u>Profile</u> 625-12-4	10 Acou coustic) nt of h= <u>aw</u> 0,90 nt of h= <u>aw</u> 0,85	astic lig absor 30 mm 0,25 100 mi αp 0,40	pht 35_ ption v cavity, NRC 0,85 m cavity NRC 0,85 m cavity	33 vith extr backed SAA 0,85 7, backed SAA 0,83	with t= SAK A d with t SAK B	orber = 30 mm . Form. t= 30 m Form. - t= 140 r	n mineral 125 Hz 0,25 m minera 125 Hz 0,40 nm miner	wool (gla 250 H; 0,70 al wool (g 250 H 0,70	L ass wool) z 500 H 0,85 Lass wool z 500 H 0,85 rockwool	0ad bea	2 kH 2 kH 5 0,95 Hz 2 kHz 0 0,95	z 4 kHz 3 0,75 2 4 kHz 5 0,75	Testing Repor BAE 18-323-0 E Testing Repor BAE 18-323-0
Subject: LIGN Application: A mineral wool installed in fro Profile 625-12-4 installed in fro Profile 625-12-4 installed in fro Profile	0 Acou coustic) nt of h= <u>aw</u> 0,90 nt of h= <u>aw</u> 0,85 nt of h=	astic lig absor 30 mm 0,25 100 m 0,40 150 m αp	n cavity, NRC 0,85 m cavity NRC 0,85 m cavity	33 vith extr backed SAA 0,85 , backed SAA 0,83 , backed SAA	with t= SAK A d with t SAK B d with t	orber = 30 mm : Form. - t= 30 m Form. - t= 140 r Form.	n mineral 125 Hz 0,25 m minera 125 Hz 0,40 nm miner 125 Hz	wool (gla 250 Hz 0,70 al wool (g 250 H 0,70 ral wool (2250 Hz	L ASS WOOL) 2 500 H 0,85 Lass Wool 2 500 H 0,80 FOCKWOOL 2 500 H	.oad bea 	2 kH 2 kH 2 kH 2 kH 2 kH 2 kH 2 kH 2 kH 2 kH	z 4 kHz 5 0,75 2 4 kHz 5 0,75 2 4 kHz	Testing Repor BAE 18-323-0 BAE 18-323-0 BAE 18-323-0 Testing Repor

Table 6: Acoustic absorption with extra absorber (mineral wool)

Page 21 of 23 of European Technical Assessment no. ETA-21/0360, issued on 2022-07-08

Subject: LIGNO Acoustic light 3G_33 Application: Acoustic absorption with extra absorber (mineral wool)

installed in front of h= 30 mm cavity, backed with t= 30 mm mineral wool (glass wool)

Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,75	0,30	0,75	0,74	С	0	0,30	0,55	0,70	0,85	0,90	0,70	BAE 18-323-02
625-22n40-4	0,65	0,30	0,70	0,70	С	М	0,30	0,55	0,65	0,90	0,70	0,45	BAE 19-323-10

installed in front of h= 100 mm cavity, backed with t= 30 mm mineral wool (glass wool)

Profile	αw	αp	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,70	0,40	0,70	0,71	С	0	0,40	0,50	0,60	0,80	0,90	0,70	BAE 18-323-05
625-12n25-4	0,75	0,40	0,75	0,73	С	0	0,40	0,55	0,65	0,85	0,85	0,65	BAE 18-323-06
625-22n40-4	0,60	0,40	0,70	0,67	С	М	0,40	0,50	0,60	0,85	0,70	0,45	BAE 19-323-17

installed in front of h= 100 mm cavity, backed with t= 80 mm mineral wool (rockwool)

Profile	αw	αρ	NRC	SAA	SAK	Form.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-20-4	0,60	0,35	0,65	0,66	С	MH	0,35	0,40	0,55	0,85	0,85	0,60	BAE 19-323-22
625-22n40-4	0,65	0,50	0,65	0,68	С	М	0,50	0,50	0,60	0,90	0,70	0,50	BAE 19-323-21

Table 7: Acoustic absorption with extra absorber (mineral wool)

Subject: LIGNO Acoustic light 35_33 A10G Application: Acoustic absorption with cavity

installed in front of h= 30 mm cavity

Profile	αw	αρ	NRC	SAA	SAK F	orm.	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	Testing Report
625-12-4	0,30	0,20	0,30	0,31	D	н	0,20	0,25	0,25	0,30	k0,45	0,65	BAE 17-329-03
625-18-6	0,30	0,15	0,30	0,30	D	Н	0,15	0,25	0,25	0,30	0,40	0,60	BAE 17-329-01 STN07.2018
625-23-8	0,30	0,20	0,25	0,27	D	Н	0,20	0,25	0,25	0,25	0,35	0,55	BAE 17-329-09_ STN07.2018
625-20-4	0,30	0,20	0,30	0,31	D	Н	0,20	0,25	0,25	0,30	0,45	0,70	BAE 17-329-06 STN07.2018
625-12n25-4	0,35	0,20	0,30	0,33	D	н	0,20	0,25	0,25	0,35	0,45	0,70	BAE 17-329-08
625-18n38-6	0,25	0,15	0,25	0,26	E	н	0,15	0,20	0,20	0,25	0,35	0,60	BAE 17-329-05

Table 8:Acoustic absorption with cavity

Annex 4 Design of the cross laminated timber

1 Mechanical actions perpendicular to the cross laminated timber

Stress distribution within the cross laminated timber has to be calculated taking into account the shear deformation of the cross layers.

For simply supported cross laminated timber elements with 3 layers the stress distribution may be calculated according to EN 1995-1-1 as mechanically jointed beam where the value s_i/K_i is substituted by $d_i/(G b_{ef})$ with d_i = thickness of the cross layer, G = shear modulus of the cross layer (see Figure 4) and b_{ef} = effective width of the cross layer.

$$b_{ef} = rac{b \cdot b_q}{a_q}$$

with

b = cross layer width

 $b_q = cross board width$

 a_q = centre to centre cross board spacing

For the design of cross laminated timber, the characteristic strength and stiffness values shall be taken from Annex 3.

For the bending design only the stresses at the edges of the boards are decisive, axial stresses in the centre of the boards are not considered in the design.

Tension loads perpendicular to the element should be avoided.

2 Mechanical actions in plane of the cross laminated timber

Stress distribution within the element has to be calculated by taking into account only the boards which are oriented in the direction of the actions.

Shear stresses may be calculated with the total width of the cross laminated timber.

For the design of cross laminated timber elements made of layers of soft- or hardwood the characteristic strength and stiffness values of the layers shall be taken from Annex 3.

Annex 5 In plane shear strength of Lignotrend Akustik light

1 General

The design rules given in this section amend the design rules for shear design given in EN 1995-1-1.

1.1 In plane shear strength of elements with continuous, edge glued layers

The shear capacity shall be based only on the accumulated capacity of the continuous, edge glued layers. Layers with gaps in between the boards within a layer shall be disregarded when determining the in-plane shear capacity.

1.2 In plane shear strength of elements without continuous, edge glued layers

The shear capacity shall be based on the gross cross section of the Lignotrend LIGNO acoustic panels and the characteristic shear strength $f_{v,k}$ given in equation (1).

$$f_{v,k} = \min \begin{cases} 8, 0 \cdot \frac{b_{net} \cdot h_{net}}{b \cdot h_{tot}} \\ 2, 0 \cdot \frac{2 \cdot \sum I_p}{h_{tot} \cdot a_i} \end{cases} \text{ in } N/mm^2$$
(1)

Where

$$\begin{split} \sum l_{p} &= \frac{b_{q}}{12 \cdot a_{q}} \cdot \left[\frac{b_{11}}{a_{11}} \cdot \left(b_{11}^{2} + b_{q}^{2} \right) + \frac{b_{21}}{a_{21}} \cdot \left(b_{21}^{2} + b_{q}^{2} \right) \right] \\ b_{net} &= \qquad \text{Sum of longitudinal or cross board widths within element width b in mm} \\ h_{net} &= \qquad \text{Sum of longitudinal or cross board thicknesses in the element in mm} \\ b_{net} \cdot h_{net} & \qquad \text{Smaller product of } b_{net} \text{ and } h_{net} \text{ of longitudinal or cross layers, respectively, in mm}^{2} \\ b &= \qquad \text{Element width in mm} \\ h_{tot} &= \qquad \text{Element thickness in mm} \\ a_{q} &= \qquad \text{Centre to centre spacing of cross layer boards in mm} \\ b_{q} &= \qquad \text{Width of cross layer boards in mm} \\ a_{11} &= \qquad \text{Centre to centre spacing of longitudinal layer 1 boards in mm} \\ b_{11} &= \qquad \text{Width of longitudinal layer 1 boards in mm} \\ a_{21} &= \qquad \text{Centre to centre spacing of longitudinal layer 2 boards in mm} \\ a_{i} &= \qquad \text{Width of longitudinal layer 2 boards in mm} \\ a_{i} &= \qquad \max \{b_{q}; b_{11}; b_{21}\} \end{split}$$

$$\sum I_{p} = \frac{b_{q}}{12 \cdot a_{q}} \cdot \left[\frac{b_{11}}{a_{11}} \cdot \left(b_{11}^{2} + b_{q}^{2} \right) + \frac{b_{21}}{a_{21}} \cdot \left(b_{21}^{2} + b_{q}^{2} \right) \right]$$

Leistungserklärung

LIGNO_acoustics panels_de_V02

Eindeutiger Kenncode des Produkttyps: 1.

LIGNO Acoustic Panels according to ETA-21/0360

2. Verwendungszwecke:

Brettsperrholz-Akustikpaneele

3. Hersteller:

> LIGNOTREND Produktions GmbH Landstraße 25, 79809 Weilheim Deutschland Telefon +49-7755-9200-0

Bevollmächtigter: 4.

Kein externer Bevollmächtigter

5. System zur Bewertung und Überprüfung der Leistungsbeständigkeit:

System 1

Harmonisierte technische Spezifikation: 6.

ETA-21/0360

Notifizierte Stelle:

Nr. 0769 - Karlsruher Institut für Technologie (KIT) -Versuchsanstalt für Stahl, Holz und Steine

Bewertungsdokument:

Bescheinigung der Leistungsbeständigkeit Nr. 0769-CPR-6264/01

International geschützte Markenprodukte:

LIGNO[®] Alle Produkte des Brettsperrholzpioniers Lignotrend.

LIGNO® Akustikpaneele Akustik aus Echtholz.

LIGNO[®] Akustikpaneele Akustik für Zuhause.

LIGNOTREND Produktions GmbH | Landstr. 25 | 79809 Weilheim | Deutschland | +49 7755 9200-0 | info@lignotrend.com | www.lignotrend.com Handelsregister: Amtsgericht Freiburg i.Br. HRB 621542 | Sitz der Gesellschaft: Weilheim Geschäftsführer: Matthias Eckert, Ralph Eckert | USt-IdNr.: DE229826275

7. Erklärte Leistung:

Wesentliche Merkmale	Leistung
Elastizitätsmodul	Charakteristischen Eigenschaften: nach ETA-21/0360 in Abhängigkeit des Querschnittaufbaus.
Biegefestigkeit	Elementdicken: 15 bis 66 mm Elementbreiten: bis 1 25 m
Druckfestigkeit	Elementlängen: bis 8 m
Zugfestigkeit	Die Typbezeichnung sowie die Produkt- und Bauteilabmessungen können den Auftragsunterlagen entnommen werden.
Festigkeitsklasse	C16, C24, C30, D30 nach EN 338
Holzfeuchte	8±2%; 9±2%; 10±2% nach EN 13183-2
Verbindungselemente	Verwendung nach EN 1995-1-1
Kriechverhalten	Gemäß EN 1995-1-1
Brandverhalten	B-s2-d0 (wie in Abbildung 5 aufgeführt)
	C-s2-d0 (wie in Abbildungen 6-7 aufgeführt)
	D-s2-d0 (Entscheidung Kommission 2005/610/EG)
Gesundheit und Umwelt	Es werden keine gefährlichen Stoffe > 0,1 Gew% im Produkt verwendet.
	Es werden nur Holzwerkstoffe verwendet, die der Emissionsklasse E1 nach EN 13986 zugeordnet werden können.
	Die chemische Zusammensetzung des Klebstoffes ist bei der ETA Danmark A/s hinterlegt.
Akustikabsorption	a _w = 0,90 bis 0,25 (wie in Tabellen 1-8 aufgeführt)

8. Die Leistung des vorstehenden Produkts entspricht den erklärten Leistungen. Für die Erstellung der Leistungserklärung im Einklang mit der Verordnung (EU) Nr. 305/2011 ist allein der obengenannte Hersteller verantwortlich.

Unterzeichnet für den Hersteller und im Namen des Herstellers von:

Ralph Eckert, Geschäftsführung

LIGNOTREND Produktions GmbH Landstp 25 D-79809 Weilheim-Bannhol: Tel. 07755/9200-0 Fax 07755/9200-55 E-Mait: imp folignotrend.com

(Unterschrift)

International geschützte Markenprodukte:

Weilheim, 08.09.2022

LIGNO[®] Alle Produkte des Brettsperrholzpioniers Lignotrend.

LIGNO[®] Akustikpaneele Akustik für Zuhause.

LIGNOTREND Produktions GmbH | Landstr. 25 | 79809 Weilheim | Deutschland | +49 7755 9200-0 | info@lignotrend.com | www.lignotrend.com Handelsregister: Amtsgericht Freiburg i.Br. HRB 621542 | Sitz der Gesellschaft: Weilheim Geschäftsführer: Matthias Eckert, Ralph Eckert | USt-IdNr.: DE229826275