UMWELT-PRODUKTDEKLARATION

nach ISO 14025 und EN 15804+A2

Deklarationsinhaber

IGP Pulvertechnik AG

Herausgeber

Institut Bauen und Umwelt e.V. (IBU)

B.II. ()

institut Bauen und Omweit e.v. (IBO)

Ausstellungsdatum

Gültia bis

Beschichtungspulver IGP-DURA®one Serie 56 IGP Pulvertechnik AG

www.ibu-epd.com | https://epd-online.com

Allgemeine Angaben

IGP Pulvertechnik AG Beschichtungspulver IGP-DURA®one Serie 56 Inhaber der Deklaration Programmhalter IGP Pulvertechnik AG IBU - Institut Bauen und Umwelt e.V. Hegelplatz 1 Ringstrasse 30 10117 Berlin 9500 Wil Deutschland Schweiz Deklarationsnummer Deklariertes Produkt/deklarierte Einheit Beschichtungspulver IGP-DURA®one, Serie 56 für fassadentaugliche, wetterfeste Pulverlacke; Deklarierte Einheit 1kg Diese Deklaration basiert auf den Produktkategorien-Regeln: Gültigkeitsbereich: Die vorliegende Umwelt-Produktdeklaration deklariert eine Beschichtungen mit organischen Bindemitteln, 01.08.2021 (PCR geprüft und zugelassen durch den unabhängigen durchschnittliche Rezeptur eines organischen, duroplastischen Sachverständigenrat (SVR)) Beschichtungspulvers der Serie 56 des Herstellers IGP Pulvertechnik AG. Die Deklaration umfasst die abbildbare Farbpalette der Uni- und der Ausstellungsdatum Perlglimmereffekt-Farbtöne der wetterfesten Produktgruppen: IGP-DURA®one 5603, 5607 sowie 561M. Gültig bis Die deklarierten Produkte beziehen sich auf die Entwicklungs- und Produktionsstandorte in Wil, Schweiz sowie Siestrzeń, Polen. Der Inhaber der Deklaration haftet für die zugrundeliegenden Angaben und Nachweise; eine Haftung des IBU in Bezug auf Herstellerinformationen, Ökobilanzdaten und Nachweise ist ausgeschlossen. Die EPD wurde nach den Vorgaben der EN 15804+A2 erstellt. Im Folgenden wird die Norm vereinfacht als EN 15804 bezeichnet. [Unterschrift] Verifizierung Name des/der Vorstandsvorsitzenden Die Europäische Norm EN 15804 dient als Kern-PCR (Vorstandsvorsitzende/r des Instituts Bauen und Umwelt e.V.) Unabhängige Verifizierung der Deklaration und Angaben gemäß ISO 14025:2011 X intern extern [Unterschrift] [Unterschrift] Name des/der Geschäftsführers/Geschäftsführerin Name des/der Verifizierers/Verifiziererin, (Geschäftsführer/in des Instituts Bauen und Umwelt e.V.) (Unabhängige/-r Verifizierer/-in)

Produkt

Produktbeschreibung/Produktdefinition

Die Niedertemperatur-Pulverlacke der Serie 56 gehören der wetterfesten Qualitätsstufe an und basieren auf gesättigten Polyesterharzen, entsprechenden Härtern, sowie feuchte- und lichtbeständigen Pigmenten.

Die Produktserie erlaubt aufgrund schnell-reaktiv vernetzender Bindemittel eine energie- und ressourceneffiziente Beschichtung.

Die Serie umfasst folgende Oberflächenausprägungen: IGP-DURA®*one* 5603 glattverlaufend, matt; IGP-DURA®*one* 5607 glattverlaufend,seidenglänzend; IGP-DURA®*one* 561M feinstrukturiert, matt.

Produktdefinition:

Die Beschichtungspulver unterliegen nicht der CE-Kennzeichnungspflicht oder weiteren Harmonisierungsrechtsvorschriften der EU: es gelten die jeweils nationalen Bestimmungen am Ort der Verwendung.

Anwendung

IGP-DURA®one 56 wird zur Pulverbeschichtung vielfältiger Outdoor- und Fassaden-Anwendungen auf Metallsubstraten verwendet.

Das Produktprofil erfüllt einerseits alle Leistungsanforderungen der Gütegemeinschaften und ermöglicht andererseits durch hohe Reaktivität schnelle Aufheiz-und Vernetzungszeiten im thermischen Beschichtungsprozess, was das Beschichtungspulver der Serie 56 zu einem energieeffizienten Allround-Produkt für diverse Anwendungen macht.

Technische Daten

Die mit der empfohlenen Schichtdicke von etwa 60 μ m applizierten Pulverlackfilme des IGP-DURA®one, Serie 56 besitzen folgende technische Eigenschaften:

Pulver- und Filmeigenschaften

Bezeichnung	Wert	Einheit
Bewitterungsqualität gemäss GSB und Qualicoat	GSB Florida 1; Qualicoat Kl. 1	-
Dichte EN ISO 8130-2	1,2-1,6	kg/l
Feststoffgehalt EN ISO 14680-2	99	%
Theoretische Ergiebigkeit bei 60 µm, 90% Nutzungsgrad	8 - 12	qm
Glanzbereich Matt 56-03 EN ISO 2813	25 - 35	*R'/60°
Glanzbereich Seidenglanz 56-07	65 - 85	R'/60°
Glanzbereich Feinstruktur 56-1M	8 - 22	R'/60°
Härtungsgdauer	ab 15	min
Härtungstemperatur	160	° C
Schlagtiefung indirekt EN ISO 6272-2	≥ 2.5	Nm
Biegetest EN ISO 1519	≤ 5	mm
Adhäsionstest EN ISO 2409	keine Ablösg.	-
Salzsprühbeständigkeit (AASS) EN ISO 9227, ISO 4628	1000 h max ≤ S2	h
Kondenswassertest EN ISO 6270-2 CH, ISO 4628	1000 h max ≤ S2	h
Glanzstabilität Kurzbewitterung QUV-B EN ISO 16474-3	300 h ≥ 50%	RG**
Glanzstabilität Kurzbewitterung WOM EN ISO 16474-2	1000 h ≥ 50%	RG
Florida Freibewitterung Glanzstabilität gemäss GSB, Qualicoat ISO 2810	1 Jahr ≥ 50%	RG
Farbstabilität gem. Grenzwerten Qualicoat und GSB, CIELAB Farbraum ISO 11664-4; D65	GW*** : QC: App. A12; GSB: AL631-4: App. 2, 2.4	QC: ΔE GSB: ΔL*, C*
Kratzfestigkeit Martindale 32 Touren, 200 gr CEN/TS 16611	≥ 60%	RG

^{*} R' - Reflektometerwerte bei 60° Messwinkel

Grundstoffe/Hilfsstoffe

Die Deklaration bezieht sich auf die folgende Zusammensetzung des Beschichtungsstoffes aus der Serie IGP-DURA®one 56:

Bezeichnung	Wert	Einheit
Bindemittel (Harze und Härter)	58-74	%
Pigmente (Bunt u. Effektpigmente)	0,01-6	%
Titandioxid	0-34	%
Extender	0,9-32.5	%
Additive	1,2-2,2	%

Alle Artikel der Serie 56 entsprechen der /REACH Verordnung (EG) Nr.1907/2006/.

Besorgniserregende Stoffe (SVHC) gemäß aktueller ECHA-Kandidatenliste, sowie Stoffe des Anhang XIV der REACH Verordnung (EG) Nr. 1907/2006/ sind über dem gesetzlich festgelegten Schwellenwert von 0.1% nicht enthalten. Artikel der Serie 56 entsprechen weiter der /Richtlinie (EU) 2015/863 (RoHS 3)/.

^{**} RG- Restglanz

^{***} GW- Grenzwerte ' QC- Qualicoat

Referenz-Nutzungsdauer

Bei sachgerechter Pflege der mit IGP-DURA®one, Serie 56 beschichteten Oberfläche entspricht die Nutzungsdauer der

Standzeit des Gebäudes. Witterungsbedingte Veränderungen von Farbton und Glanz beeinträchtigen die schutzgebende Wirkung nicht.

LCA: Rechenregeln

Deklarierte Einheit

Die deklarierte Einheit ist 1 kg.

Angabe der deklarierten Einheit

Bezeichnung	Wert	Einheit
Rohdichte (Mittelwert)	-	kg/m ³
Deklarierte Einheit	1	kg

Die EPD deklariert eine durchschnittliche Zusammensetzung für alle untersuchten Produkte. Die gewichtete durchschnittliche Zusammensetzung des deklarierten Produkts wird im Verhältnis zu den Produktionsmengenanteilen von insgesamt 12 Varianten berechnet, die an den IGP-Produktionsstandorten in Wil, Schweiz, und Siestrzeń, Polen, hergestellt werden. Der Produktionsprozess ist für aller Varianten alle untersuchten Varianten gleich.

Systemgrenze

Typ der EPD:

Wiege bis Werkstor mit Modulen C1-C4 und Modul D (A1-A3, C, D).

Die Ökobilanz umfasst die Rohstoffbereitstellung (Modul A1), Transporte zur Produktionsstätte (Modul A2) und die Herstellungsprozesse des Pulverlacks, einschließlich der Verpackung (Modul A3).

Der Beschichtungsprozess ist nicht Gegenstand der Studie. Die biogenen CO₂ Emissionen aus dem Verpackungsmaterial sind in A1-A3 deklariert.

Am Lebensende wird das Produkt zur Entsorgung transportiert (Modul C2) und anschließend entsorgt (Modul C4).

Geographische Repräsentativität

Land oder Region, in dem/r das deklarierte Produktsystem hergestellt und ggf. genutzt sowie am Lebensende behandelt wird: Europa

Vergleichbarkeit

Grundsätzlich ist eine Gegenüberstellung oder die Bewertung von EPD-Daten nur möglich, wenn alle zu vergleichenden Datensätze nach *EN 15804* erstellt wurden und der Gebäudekontext bzw. die produktspezifischen Leistungsmerkmale berücksichtigt werden. Hintergrunddatenbank: Sphera LCA FE (*GaBi ts*)-Software, CUP 2023.2.

LCA: Szenarien und weitere technische Informationen

Charakteristische Produkteigenschaften biogener Kohlenstoff

Die Kalkulation des biogenen Kohlenstoffgehaltes basiert auf der Annahme, dass die absolut trockene Holz- und Kartonmasse zu 50% aus biogenem Kohlenstoff besteht. Keines der untersuchten Produkte enthält biogenen Kohlenstoff, sondern nur Verpackungsmaterial.

Die biogenen CO₂ Emissionen aus dem Verpackungsmaterial sind in A1-A3 deklariert.

Bezeichnung	Wert	Einheit
Biogener Kohlenstoff im Produkt	-	kg C
Biogener Kohlenstoff in der zugehörigen Verpackung	0,0259	kg C

Die folgenden Informationen wurden zur Berechnung der deklarierten Module verwendet:

Ende des Lebenswegs (C1-C4)

- Modul C1: Manuelle Demontage (keine Umweltlasten).
- Modul C2: Eine durchschnittliche Transport-entfernung von 200 km per Lkw wird angenommen.
- Modul C4: Als Entsorgungsszenario wird angenommen, dass Pulverlack, der sich bei der Entsorgung auf der Aluminiumoberfläche befindet, beim Recycling des Aluminiums thermisch entsorgt wird (Schmelzen/Verbrennung).

Keine Gutschriften wurden für die Verbrennung auf der Grundlage von Energiesubstitution berücksichtigt, sondern nur die resultierenden Emissionen.

Bezeichnung	Wert	Einheit
Für die thermischen Verwertung ohne	4	ka
Energierückgewinnung	'	kg

LCA: Ergebnisse

LCA:	Erge	มเแออ	e e														
ANGABE DER SYSTEMGRENZEN (X = IN ÖKOBILANZ ENTHALTEN; MND = MODUL ODER INDIKATOR NICHT DEKLARIERT;																	
MNR = MODUL NICHT RELEVANT)																	
Stadium der														chriften			
Produktionsstadium Errichtung				Nutz	Nutzungsstadium					Entsorgungsstadium				Lasten			
1 Toda	des Bauwerks				Nutzungsstaulum				Littoorgungostaulum					rhalb der			
					_						1					-	mgrenze
Bur			L		l Bun					ja "				₽ DE		-sgc	<u>a</u> (
Rohstoffversorgung	Ę	DG .	Transport vom Hersteller zum Verwendungsort	Ф	pue	Instandhaltung	<u> </u>		ng	atz f ben oen	oen Jes	Rückbau/Abriss	Έ	Abfallbehandlung	ng	fiederverwendungs Riickgewinnings-	oder Recyclingpotenzial
ersc	Transport	Herstellung	er z	Montage) N	hali	Reparatur	Ersatz	Erneuerung	insa treil bäu	nsa treil	g ≰ 	Transport	 an	Beseitigung	Ven	er
) ¥	gui	srste	spc stell enc	Jon	A/g	and	eba	Ers	leu	leu eej Ge	Bed G	g g	gu	per	Sei	le V	od ill
nstc	F	≝	ran ders erw	2	_ nz	nsta	<u> </u>		<u> </u>	erg das des	las		-	ofall	Be	l de s	o co
Rol			T >		Nutzung/Anwendung	=				Energieeinsatz für das Betreiben des Gebäudes	Wassereinsatz für das Betreiben) <u> </u>		₹		Wiederverwendungs- Rückgewinnungs-	Re
A1	A2	A3	A4	A5	B1	B2	В3	В4	B5	В6	B7	C1	C2	C3	C4	_ >_	D
X	Х	Х	MND	MND	MND	MND	MNR	MN		MND	MND		Х	X	X		X
ERGEE	NISSE	DER Ö	KOBIL	ANZ – I	UMWEL	TAUSV	VIRKUN	IGEN	nach EN	15804-	+A2: 1	ka IGP-	DURA	one S	erie 56		
Indikat							Einhe		A1-A3	С		C2		C3	C4		D
		ngspotenz	zial total (0	SWP-tota	1)		kg CO ₂ -		4E+00	0		9,58E-03		0	2,52E+0	0	0
		• •	zial fossil (<u> </u>		kg CO ₂ -		3,97E+00	0)	9,46E-03		0	2,52E+0		0
Globales	Erwärmu	ngspotenz	zial bioger	(GWP-b	iogenic)		kg CO ₂ -	-Äq.	3,04E-02	0)	2,21E-05		0	2,02E-0	4	0
			zial luluc (kg CO ₂ -		1,53E-03	0)	8,92E-05		0	5,41E-0	5	0
Abbau Po	otential de	r stratosp	härischen	Ozonsch	nicht (ODP)	kg CFC1	1-Äq.	1,63E-11	0	,	8,44E-16	,	0	8,56E-1	3	0
Versauer	ungspote	nzial von l	Boden und	l Wasser	(AP)		mol H+-	Äq.	7,98E-03	0	١	1,63E-05	;	0	4,27E-0	4	0
			Տwasser (ե				kg P-Ä	-	1,39E-05	0		3,51E-08	_	0	2,17E-0		0
			zwasser (e)		kg N-Ä	- +	2,01E-03	0		6,56E-06		0	9,53E-0		0
Eutrophie	erungspot	enzial Lar	nd (EP-terr	estrial)			mol N-Äq. kg NMVOC-		2,18E-02	0	1	7,52E-05		0	1,99E-0	3	0
Bildungsp	ootential f	ür troposp	härisches	Ozon (P	OCP)		Äq.		7,43E-03 0		1	1,46E-05	,	0	2,63E-0	4	0
	für den a	biotischer	n Abbau ni	cht fossil	er Ressou	rcen	kg Sb-Äq.		9,64E-06 0			6,26E-10		0	6,71E-0	9	0
(ADPE)	für den a	biotischer	n Abbau fo	ssiler Bre	ennstoffe (ADPF)	MJ		8,36E+01	0		1,31E-01		0	1,28E+0	0	0
Wassernu			.,	00.101 2.10	,	,	m ³ Welt	-Äq.	3,18E-01	0		1,11E-04		0	2,36E-0		0
							entzog										
				ANZ – I	INDIKA	OREN	ZUR B	ESCI	HREIBUN	G DES	RESS	OURCE	NEINS#	ATZES	nach EN	1580	4+A2: 1
	-DURA	®one S	erie 56														
Indikat	-			/=			Einheit		A1-A3	C		C2		C3	C4		D
			als Energi		ung (PERI	4)	MJ MJ		1,13E+01 9,33E-01	0		9,27E-03 0	<u> </u>	0	4,23E-0 0	1	0
			ergie (PER		ung (i Livi	vi)	MJ	-	1.22E+01	0		9,27E-03		0	4,23E-0	1	0
					ger (PENF	RE)	MJ		6,14E+01	0		1,31E-01		0	2,2E+0		0
		Primären	ergie zur s	tofflichen	Nutzung		MJ		2,22E+01	0		0		0	-2,07E+0)1	0
(PENRM)		hare Prim	ärenergie	(PENRT)	\		MJ	_	8,37E+01	0	,	1,31E-01		0	1,28E+0		0
	on Sekun			(I LIVIXI)	<u>'</u>		kg		0,372.01			0		0	0		0
Erneuerb	are Sekui	ndärbrenn	stoffe (RS	F)			MJ		0	0	,	0		0	0		0
Nicht ern	euerbare	Sekundär	brennstoff	e (NRSF)		MJ		0	0		0		0	0		0
			ourcen (F\	· ·			m ³		2,21E-02 0			1,02E-05		0	5,66E-0	3	0
					BFALL	KATE	ORIEN	UND	OUTPUT	FLÜSS	E nac	h EN 15	804+A2	2:			
		A®one	Serie 5	6													
Indikat							Einhe	eit	A1-A3	C		C2		C3	C4		D
Gefährlicher Abfall zur Deponie (HWD) Entsorgter nicht gefährlicher Abfall (NHWD)						kg kg		2,09E-08 8,77E-01	0		4,86E-13 1,89E-05	_	0	4,43E-1 2,52E-0	_	0	
Entsorgter radioaktiver Abfall (RWD)						kg		1,44E-03	0		1,7E-07	_	0	4,32E-0		0	
Komponenten für die Wiederverwendung (CRU)						kg		0	0		0		0	0		0	
Stoffe zum Recycling (MFR)						kg		0	0		0		0	0		0	
Stoffe für die Energierückgewinnung (MER)						kg	-+	0	0		0		0	0		0	
Exportierte elektrische Energie (EEE) Exportierte thermische Energie (EET)						MJ MJ		0	0		0		0	0		0	
						1	l coto					an el-	U	l U		U	
ERGEBNISSE DER ÖKOBILANZ – zusätzliche Wirkungskategorien nach EN 15804+A2-optional: 1 kg IGP-DURA®one Serie 56																	
Indikat		Aconc	ocric o		Einheit		A1-A3		C1		C2		C3		C4		D
		kheiten a	ufgrund vo	n .			7,64E-08		0		2,01E-10		0				0
Feinstaubemissionen (PM) Krankheitsfälle						1,04⊑-00		U	4	_,∪ 1 ⊆ - 1 U		U		4,88E-09			

Wirkung durch Exposition des Menschen mit U235 (IR)	kBq U235-Äq.	2,07E-01	0	2,45E-05	0	4,57E-03	0
Toxizitätsvergleichseinheit für Ökosysteme (ETP-fw)	CTUe	4,67E+01	0	9,23E-02	0	4,8E-01	0
Toxizitätsvergleichseinheit für Menschen (krebserregend) (HTP-c)	CTUh	1,62E-09	0	1,86E-12	0	3,93E-11	0
Toxizitätsvergleichseinheit für Menschen (nicht krebserregend) (HTP-nc)	CTUh	1,00037656097922E- 07	0	8,21666459727189E- 11	0	2,95968420599245E- 09	0
Bodenqualitätsindex (SQP)	SQP	1,32E+01	0	5,47E-02	0	3,81E-01	0

Einschränkungshinweis 1 - gilt für den Indikator "Potenzielle Wirkung durch Exposition des Menschen mit U235".

Diese Wirkungskategorie behandelt hauptsächlich die mögliche Wirkung einer ionisierenden Strahlung geringer Dosis auf die menschliche Gesundheit im Kernbrennstoffkreislauf. Sie berücksichtigt weder Auswirkungen, die auf mögliche nukleare Unfälle und berufsbedingte Exposition zurückzuführen sind, noch auf die Entsorgung radioaktiver Abfälle in unterirdischen Anlagen. Die potenzielle vom Boden, von Radon und von einigen Baustoffen ausgehende ionisierende Strahlung wird eben-falls nicht von diesem Indikator gemessen.

Einschränkungshinweis 2 – gilt für die Indikatoren: "Potenzial für die Verknappung abiotischer Ressourcen - nicht fossile Ressourcen", "Potenzial für die Verknappung abiotischer Ressourcen - fossile Brennstoffe", "Wasser-Entzugspotenzial (Benutzer)", "Potenzielle Toxizitätsvergleichseinheit für Ökosysteme", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - kanzerogene Wirkung", "Potenzielle Toxizitätsvergleichseinheit für den Menschen - nicht kanzerogene Wirkung", "Potenzieller Bodenqualitätsindex".

Die Ergebnisse dieses Umweltwirkungsindikators müssen mit Bedacht angewendet werden, da die Unsicherheiten bei diesen Ergebnissen hoch sind oder da es mit dem Indikator nur begrenzte Erfahrungen gibt.

Literaturhinweise

Normen

DIN CEN/TS 16611, Martindale -Test

Der Martindale-Test ist ursprünglich eine Abriebprüfung von Textilien. Seit 2020 findet diese Prüfung im Rahmen der Qualicoat-Prüfungen Anwendung, um die Abriebbeständigkeit von Pulverlacken zu prüfen.

DIN EN 12206-1

Deutsche Fassung EN 12206-1:2021, Beschichtungsstoffe -Beschichtungen auf Aluminium und Aluminiumlegierungen für Bauzwecke - Teil 1: Beschichtungen aus Beschichtungspulvern

DIN EN 13501-1

Deutsche Fassung DIN EN 13501-1:2018, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten - Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten

DIN EN 15804

Deutsche Fassung EN 15804:2012+A2:2019 + AC:2021, Nachhaltigkeit von Bauwerken - Umweltproduktdeklarationen -Grundregeln für die Produktkategorie Bauprodukte

ISO 1519

Deutsche Fassung EN ISO 1519:2011 Beschichtungsstoffe - Dornbiegeversuch (zylindrischer Dorn)

ISO 1520

EN ISO 1520:2006 Beschichtungsstoffe - Tiefungsprüfung

ISO 2409

Deutsche Fassung EN ISO 2409:2020 Beschichtungsstoffe - Gitterschnittprüfung

ISO 2810

Deutsche Fassung EN ISO 2810:2004 Beschichtungsstoffe - Freibewitterung von Beschichtungen - Bewitterung und Bewertung

ISO 2813

DIN EN ISO 2813:2015, Beschichtungsstoffe - Bestimmung des Glanzwertes unter 20°, 60° und 85° (ISO 2813:2014); Deutsche Fassung EN ISO 2813:2014

ISO 2815

EN ISO 2815:2003, Beschichtungsstoffe - Eindruckversuch nach Buchholz

ISO 4628-2

Deutsche Fassung EN ISO 4628-2:2016, Beschichtungsstoffe -Beurteilung von Beschichtungsschäden - Bewertung der Menge und der Größe von Schäden und der Intensität von gleichmäßigen Veränderungen im Aussehen - Teil 2: Bewertung des Blasengrades

ISO 6270-2 AT

Deutsche Fassung EN ISO 6270-2:2018, Beschichtungsstoffe -Bestimmung der Beständigkeit gegen Feuchtigkeit - Teil 2: Verfahren zur Beanspruchung von Proben in Kondenswasserklimaten

ISO 6272-2

DIN EN ISO 6272-2: SO 6272-2:2011, Beschichtungsstoffe - Prüfung auf schnelle Verformung (Schlagzähigkeit) - Teil 2: Fallgewichtsversuch, kleinflächiger Eindringkörper

ISO 8130-2

ISO 8130-2:2021, Pulverlacke - Teil 2: Bestimmung der Dichte mit einem Gasvergleichspyknometer (Schiedsverfahren)

ISO 9227

Deutsche Fassung EN ISO 9227:2022, Korrosionsprüfungen in künstlichen Atmosphären; Salzsprühnebelprüfungen

ISO 11664-2

Deutsche Fassung EN ISO/CIE 11664-2:2022, Farbmetrik - Teil 2: CIE Normlichtarten:

D65 wird als Normlichtart definiert mit einer Farbtemperatur von 6504 Kelvin

ISO 14001

Deutsche und Englische Fassung EN ISO 14001:2015, Umweltmanagementsysteme - Anforderungen mit Anleitung zur Anwendung

ISO 14025

Deutsche und Englische Fassung EN ISO 14025:2011,

Umweltkennzeichnungen und -deklarationen - Typ III Umweltdeklarationen - Grundsätze und Verfahren.

ISO14680-2

Deutsche Fassung EN ISO 14680-2:2006, Beschichtungsstoffe - Bestimmung des Pigmentgehaltes - Teil 2: Veraschungsverfahren

ISO 16474 Teil 1 - 3

DIN EN ISO 16474 Teil 1 - 3:2014, Beschichtungsstoffe – Künstliches Bestrahlen oder Bewittern in Geräten DIN EN ISO 16474-1:2014-03: Teil 1 Allgemeine Anleitung DIN EN ISO 16474-2:2014-03: Teil 2 Xenonbogenlampen (z.Bsp. WOM); Bestrahlung, Temperatur Zyklen DIN EN ISO 16474-3:2014-03: Teil 3 Fluoreszenzlampen (z.Bsp. QUV-B): Bestrahlung, Temperatur, Zyklen

Weitere Literatur

ASTM D2244

Standard ASTM D2244-22, Standardverfahren für die Berechnung von Farbtoleranzen und Farbdifferenzen anhand von instrumentell gemessenen Farbkoordinaten

ASTM D 2794

Standard ASTM D 2794-1993, Prüfung von organischen Beschichtungen auf Beständigkeit gegen schnelle Verformung; Schlagbeanspruchung

CIELAB bzw. CIE

Das CIE-Lab-System ist ein Farbraum, der von der internationalen Beleuchtungskommission CIE im Jahr 1976 festgelegt wurde. Farbunterschiede werden numerisch bestimmt. Das Modell versucht den geometrischen Abstand zwischen zwei Farben im Farbraum dem menschlichen Wahrnehmungsvermögen anzupassen.

GSB International

Gütegemeinschaft für die Sicherung der Qualität der Beschichtung von Werkstücken und der dabei verwendeten Vorbehandlungs- und Beschichtungsmaterialien; www.gsbinternational.com

Hunter Farbraum

Farbraum, der 1948 von Richard Sewall Hunter definiert wurde und Farbbereiche über "Lab" Koordinaten definiert. Wie CIELAB wurde er so entworfen, dass Farbwerte mit einfachen Formeln aus dem CIEXYZ-Raum überführt werden können, aber bzgl. der Wahrnehmung gleichförmiger ist als XYZ.

IBU 2021

Institut Bauen und Umwelt e.V.: Allgemeine EPD-Programmanleitung des Institut Bauen und Umwelt e.V. (IBU). Version 1.1, Berlin: Institut Bauen und Umwelt e.V., 2016. www.ibu-epd.com.

PCR Teil A

PCR- Teil A: Rechenregeln für die Ökobilanz und Anforderungen an den Projektbericht, Berlin: Institut Bauen und Umwelt e.V., www.ibu-epd.com, Version 1.3, 2021

PCR Teil B

PCR- Teil B: Anforderungen an die EPD für Beschichtungen mit organischen Bindemitteln,

Institut Bauen und Umwelt e.V. (IBU), Version 1.7, 2019

Qualicoat

Gütegemeinschaft für die industrielle Lackierung und Beschichtung; Qualitätssicherung und Spezifikationen von Prozessen, Produkten und Qualitätstests www.qualicoat.net

REACH

Verordnung (EG) Nr. 1907/2006 über die Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH)

Richtlinie (EU) 2015/863 (RoHS 3)

gestützt auf die Richtlinie 2011/65/EU des Europäischen Parlaments und des Rates vom 8. Juni 2011 zur Beschränkung der Verwendung bestimmter als gefährlich eingestufter Stoffe.

RoHS 2011/65/EU

Richtlinie 2011/65/EU über die Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- u. Elektronikgeräten ersetzt die Richtlinie 2002/95/EC.

Sphera LCA FE (ehemals GaBi)

Sphera LCA For Experts (ehemals GaBi Software System) mit den zugehörigen Datenbanken Managed LCA Content MLC (ehemals GaBi Datenbanken), Sphera Solutions GmbH. CUP Version: 2023.2. University of Stuttgart, Leinfelden Echterdingen, MLC Datendokumentation unter https://sphera.com/product-sustainability-gabi-data-search/ (März 2024).

Verordnung (EU) 528/2012 (EU BPR)

Die Biozidprodukte-Verordnung (BPR, Verordnung (EU) 528/2012) betrifft das Inverkehrbringen und die Verwendung von Biozidprodukten, die zum Schutz von Menschen, Tieren, Materialien oder Gegenständen gegen Schadorganismen wie Schädlinge oder Bakterien eingesetzt werden.

Herausgeber

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Deutschland +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programmhalter

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Deutschland +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Ersteller der Ökobilanz

Sphera Solutions GmbH Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Deutschland +49 711 341817-0 info@sphera.com www.sphera.com

Inhaber der Deklaration

IGP Pulvertechnik AG Ringstrasse 30 9500 Wil Schweiz +41 71 929 81 49 info@igp-powder.com www.igp-powder.com