ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration	Vorwerk & Co. Teppichwerke GmbH & Co.KG
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-VOR-20140050-CBD1-EN
Issue date	03.07.2014
Valid to	02.07.2019

RE/COVER green *Resilient polyurethane floor covering*

Vorwerk Teppichwerke

www.bau-umwelt.com / https://epd-online.com

General Information

Vorwerk Teppichwerke RE/COVER green Resilient polyurethane floor covering **Programme holder Owner of the Declaration** IBU - Institut Bauen und Umwelt e.V. Vorwerk & Co. Teppichwerke GmbH & Co.KG Panoramastr. 1 Kuhlmannstraße 11 31785 Hameln 10178 Berlin Germany Germany **Declaration number Declared product / Declared unit** EPD-VOR-20140050-CBD1-EN 1 m² resilient floor covering "RE/COVER green" Scope: This Declaration is based on the Product **Category Rules:** The declaration applies to the resilient floor covering "RE/COVER green". Floor coverings, 07-2012 (PCR tested and approved by the independent expert The product is available in the designs committee) RE/COVER green (rolls) RE/COVER green PARTS (planks) Issue date It is manufactured at the Windmöller Polymer 03.07.2014 Technologie (WPT) site in Detmold, Germany. Cutting of planks take place at the windmöller flooring products site in Augustdorf, Germany. Valid to The owner of the declaration shall be liable for the 02.07.2019 underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. Verification Wermanes The CEN Norm EN 15804 serves as the core PCR Independent verification of the declaration according to ISO 14025 Prof. Dr.-Ing. Horst J. Bossenmayer (President of Institut Bauen und Umwelt e.V.) externally internally х 7 al a UNAM Dr. Burkhart Lehmann Dr. Eva Schmincke (Managing Director IBU) (Independent tester appointed by SVA)

Product

Product description

"RE/COVER green" - resilient floor covering based on polyurethane is produced with the reactive component castor oil as renewable raw material and with natural inorganic filler.

"RE/COVER green" is available in many different

- decors and textures and it is offered
- as rolls RE/COVER green
- as planks RE/COVER green PARTS.

Application

According to the use class as defined in ISO 10874 the product can be used

- in all domestic areas, classified as "use class 23",
- in all commercial areas, classified as "use class 34"
- in all industrial areas, classified as "use class 43"

Technical Data

Name	Value	Unit
Product Form RE/COVER green	Rolls	-
Product form RE/COVER green PARTS	Planks	-
Product thickness	2.5	mm
Total weight RE/COVER green	3.6	kg/m²
Total weight RE/COVER green PARTS	3.9	kg/m²

Additional product properties and performance ratings can be found in the technical information provided by Vorwerk Teppichwerke (www.vorwerk-teppich.de).

2

Base materials / Ancillary materials

Average product

Name	Value	Unit
Polyurethane including 50 % renewable material	49.3	%
Filler	45.7	%
Paper	1.8	%
Glass fibre	0.8	%
Polvester	2.4	%

The declared recipes are conform with the REACH candidate list from December 16th 2013 and do not contain listed REACH substances.

LCA: Calculation rules

Declared Unit

Average product

Name	Value	Unit
Declared unit	1	m ²
Conversion factor to 1 kg	0.27	-
Mass reference	3.75	kg/m²

System boundary

Type of EPD: Cradle to grave

System boundaries of modules A, B, C, D:

A1-A3 Production:

Energy supply and production of the basic material, processing of secondary material (waste paper/packaging), auxiliary material, transport of the material to the manufacturing site, emissions, waste water treatment, packaging material and waste processing up to the landfill disposal of residual waste (except radioactive waste). Credits for electricity and steam from the incineration of production waste are aggregated.

A4 Transport:

Transport of the packed floor covering from factory gate to the place of installation.

A5 Installation:

Installation of the floor covering, production and transport of auxiliary material, waste processing up to the landfill disposal of residual waste (except radioactive waste), the production of the amount of floor covering that occurs as installation waste incl. its transport to the place of installation. Credits for electricity and steam from the incineration of packaging and installation waste leave the product system.

B1 Use:

Indoor emissions during the use stage are considered. After the first year of use no product related VOC emissions are relevant due to VOC decay curves of the product .

B2 Maintenance:

Reference service life

The service life of resilient floor coverings depends on the correct installation and the adherence to cleaning and maintenance instructions.

A minimum service life of 20 years can be assumed /BNB/, technical service life can be considerably longer.

The use stage refers to 1 year installed floor covering. Module B1 indicates the impact from emissions during the whole service life (see calculation rules, B1 Use). The figures in module B2 have to be multiplied with the assumed service life of the floor covering.

Cleaning of the floor covering for a period of 1 year: Wet cleaning/automatic scubber – electricity, water consumption, production of the cleaning agent, waste water treatment.

The declared values in this module have to be multiplied with the assumed service life of the floor covering in the building considered.

B3 - B7:

The modules are not relevant and therefore not declared.

C1 De-construction:

Energy supply for the de-construction machine.

C2 Transport:

Transport to a landfill or to the municipal waste incineration plant (MWI).

C3 Waste processing:

C3, C3/1: Landfill and waste incineration need no waste processing.

C4 Disposal

C4, C4/1: Impact from landfill and from waste incineration (credits leave the system boundaries).

D Recycling potential:

D, D/1: Energy credits from landfill and from waste incineration (processing with < 60% efficiency).

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

LCA: Scenarios and additional technical information

The following information refers to the declared modules and is the basis for calculations or can be used for further calculations. All indicated values refer to the declared functional unit.

Transport to the construction site (A4)

Name	Value	Unit							
Litres of fuel (truck, EURO 0-5 mix)	0.0072	l/m²*100km							
Transport distance	700	km							
Capacity utilisation (including empty runs)	85	%							

Installation in the building (A5)

Name	Value	Unit
Auxiliary (adhesive)	0.4	kg
Material loss	0.15	kg

Seams are heat-sealed.

Pure cardboard packaging waste leaves the system for recycling, coated paper waste and installation waste are considered to be recovered in a municipal incineration plant.

Maintenance (B2)

Name	Value	Unit
Maintenance cycle (wet wiping, automatic scubber)	235	1/year
Water consumption	0.069	m ³
Cleaning agent, 19% solution	0.1983	kg
Electricity consumption	0.085	kWh

Domestic, commercial and industrial use are taken into account by a third each.

Further information on cleaning and maintenance see www.vorwerk-teppichboden.de

End of Life (C1-C4)

Two different end-of-life (EOL) scenarios are declared and the results are indicated separately in module C. Each scenario is calculated as a 100% scenario.

Scenario 1 (C3/1, C4/1) : 100% landfill Scenario 2 (C3/2, C4/2) : 100% municipal waste incineration (MWI)

If combinations of these scenarios have to be calculated this should be done according to the following scheme:

EOL-impact = x% impact (Scenario 1) + y% impact (Scenario 2)

Name	Value	Unit
Collected as mixed construction waste (scenario 1 and 2)	3.75	kg
Landfilling (scenario 1)	3.75	kg
Energy recovery (scenario 2)	3.75	kg

Reuse, recovery and/or recycling potentials (D), relevant scenario information

The recovery potentials due to the two end-of-life scenarios are indicated separately:

Module D/1 - recovery potential from landfill,

module D/2 - recovery potential from incineration

LCA: Results

Information on undeclared modules:

Modules B3 - B7 are not relevant during the service life of the floor covering and are therefore not declared. Module C2 represents the transport for scenario 1 and scenario 2.

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLAR								RED)									
			CONSTRUCT								BENEFITS				TITS AND		
PRO	DUCT S	TAGE	ON PR	OCESS			U	SE STA	GE			END OF LIFE STAGE BE					ND THE
			STA	AGE												BOUN	STEM NDARYS
			er a						-	gy	er	~		p	ņ		
rial	ť	ring	m tł site	>		ge		ent ¹⁾	ent	ener	wat	ction	ť	ssir	_	5	 -
nate ply	ods	ictu	t fro the	qm	e	nar	oair	e me	hm	al e se	se	olitic	spo	oce	eso	ISe-	clin ntia
w m	ran:	nufa	port to	sse	э	inte	Rep	lace	rbis	tion	ation	suos	ran:	e Dr	Disp	Rel	ecy
Ra	F	Mar	ans gate	∢		Ma		Rep	kefu	era	pera	de-o	-	ast		<u>م</u>	~~~~
			Ц Ц							Ö	Ō			8			
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	3 C4	•	D
	X		X		X	X	MND	MND	MND	MND	MND	X	Х	X	X		Х
Param								PAC	1:1 m ²		overin	g	-				
eter	U	nit	A1 - A3	3 A4	A5	E	81	B2	C1	C2	C3/1	C3/	2 C4	4/1	C4/2	D/1	D/2
GWP	[kg CC	D ₂ -Eq.]	3.65E+0	0 1.57E-	1 5.64E	1 0.0	E+0 4	.99E-1 46E-8	7.78E-3 5.3E-12	8.77E-3	0.0E+0	0.0E	+0 8.37	'E+0 =-12	4.49E+0	-2.09E-1	-2.66E+0
AP	[kg SC	D ₂ -Eq.]	2.47E-2	2 7.22E-	4 2.42E	3 0.0	E+0 1	.06E-3	3.67E-5	4.03E-5	0.0E+0	0.0E	+0 1.04	4E-3	1.97E-3	-9.83E-4	-1.08E-2
EP	[kg (PO	$(4)^3 - Eq.]$	4.95E-3	3 1.65E-	4 8.65E	4 0.0	E+0 7	7.5E-4	2.07E-6	9.24E-6	0.0E+0	0.0E	+0 4.82	2E-3	4.83E-4	-5.54E-5	-6.32E-4
ADPE	[kg Et	b Eq.]	3.48E-5	5 5.91E-	9 2.51E	6 0.0	+⊑-0 1 E+0 6	.52E-7	2.18E-0 1.08E-9	-1.43E-5 3.3E-10	0.0E+0	0.0E	+0 1.22	2E-3 7E-8	-4.69E-7	-3.83E-3	-0.00E-4
ADPF	[N	/J]	115	2.16	10.4)	3.44	0.088	0.121	0	0	2.	67	1.88	-2.37	-32.4
Captio	GWF n Eutr	P = Glob ophicati	oal warmir on potent	ng potenti tial; POCF	al; ODP = P = Forma	Depleti tion pot	on poter ential of	ntial of the troposp	he stratos heric ozo	pheric ozo ne photoc	one layer hemical	; AP = A oxidants;	cidificatio ADPE =	n pote Abiot	ential of la tic depleti	and and wa on potentia	ater; EP = al for non
RESI		OF TH		A - RES		I resour	ces; AD	PF = AI	biotic dep	letion pote	ential for f	ossil res	ources				
Param	eter l	Jnit	A1 - A3	A4	A5	B1		B2	C1	C2	C3/1	C3/2	C4	/1	C4/2	D/1	D/2
PER	E [[MJ] 2	2.177E+1	8.52E-2	4.61E+0	0.0E-	HO 2.4	5E-1 :	2.53E-2	4.76E-3	0.0E+0	0.0E+	0 1.49	E-1	3.27E-2	-6.78E-1	-7.2E+0
PER	M [MJ]	35.43	0	0	0	0.04	0	0	0	0	0	0		0	0	0
PEN	RE [MJ]	103.118	2.17	11.8	0.0E-	FU 2.4	.03	2.53E-2 0.138	4.76E-3 0.121	0.0E+0	0.0E+	2.	8	2.23	-0.76E-1	-7.2E+0 -46.6
PENF	RM [MJ]	20.882	0	0	0		0	0	0	0	0	0)	0	0	0
PENI	रा [MJ]	124	2.17	11.8	0	4	.03	0.138	0.121	0	0	2.	8	2.23	-3.71	-46.6
RSF	- [MJ]	6.9E-3	1.39E-5	3.71E-4	0.0E-	+0 4.6	9E-4	2.89E-6	7.78E-7	0.0E+0	0.0E+	0 2.25	E-3	1.78E-5	-7.74E-5	-8.83E-4
NRS	F [MJ]	7.2E-2	1.46E-4	3.87E-3	0.0E-	HO 4.6	4E-3	3.02E-5	8.15E-6	0.0E+0	0.0E+	0 4.98	E-3	1.69E-4	-8.11E-4	-9.24E-3
FVV		ERE =	Use of re	enewable	primary	enerav	excludi	8⊑-1 na rene	wable pr	4.53E-4 imarv ene	erav reso	U.UE+	sed as r	E-1	9.98E-2 aterials: I	-8.07E-1 PERM = L	-8.56E+0 Jse of
	rene	wable p	rimary er	nergy res	ources us	sed as i	aw mat	terials; I	PERT =	Fotal use	of renew	able pri	mary en	ergy r	resources	s; PENRE	= Use of
Captio	n rene	on rene wable r	ewable p primary e	rimary er nerav res	ergy exc	uding r sed as	ion rene raw ma	ewable terials:	PENRT :	energy re = Total us	sources se of non	renewa	raw ma ble prim	teriais arv ei	s; PENRI nerav res	vi = Use o sources: S	rnon SM = Use
	of se	condar	y materia	al; RSF =	Use of re	newab	le secoi	ndary fu	uels; NRS	SF = Use	of non re	enewabl	e secono	dary f	uels; FW	= Use of	net fresh
RESL	JLTS	OF Tŀ	HE LCA	A – OU	TPUT F	LOW	S AN	D WA	STE C		ORIES	:					
1 m²	floorc	overi	ng		1	-						-					
Param	eter l	Jnit	A1 - A3	A4	A5	B1	1	B2	C1	C2	C3/1	C3/2	C4	/1	C4/2	D/1	D/2
HWI	D	[kg]	1.21E-5	0.0E+0	4.75E-7	0.0E-	HO 0.0)E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+	0 0.0E	+0	0.0E+0	0.0E+0	0.0E+0
RW	D	[kg]	2.95E-3	2.84E-6	2.55E-4	0.0E-	FO 3.4	4E-4	3.07E-2 1.99E-5	4.27E-4 1.59E-7	0.0E+0	0.0E+	0 2.85	E+0 E-5	1.12E+0 1.17E-4	-6.22E-1	-5.67E-3
CRI	J	[kg]	0	0	0	0		0	0	0	0	0	0)	0	0	0
MFF	र २	[kg] [ka]	6.4E-4	0.0E+0	7.71E-2	0.0E-	ю 0.0)E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+	0 0.0E	:+0	0.0E+0	0.0E+0	0.0E+0
EEE		MJ]	0	0	-0.258	0		0	0	0	0	0	-1.5	58	-16.7	0	0
EET		MJ]	0	0	-0.61	0		0	0	0	0	0	0)	-6.08	0	0
	HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EEE = Exported																
Captio	n fo	r re-use	ardous w e; MFR =	aste disp Materials	osed; NF s for recy	IWD = cling; N	Non ha: IER = N	zardous laterials	s waste d s for ener thermal e	isposed; gy recove energy	RWD = I ery; EEE	Radioac = Expo	tive was rted elec	te dis trical	posed; C energy;	RU = Cor EEE = Ex	nponents ported

The declared result figures in module B2 have to be multiplied by the assumed service time (in years) of the floor covering in the building considered.

References

Institut Bauen und Umwelt

Institut Bauen und Umwelt e.V., Berlin (pub.): Generation of Environmental Product Declarations (EPDs);

General principles

for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013-04 www.bau-umwelt.de

PCR Part A

Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Background Report. April 2013 www.bau-umwelt.de

ISO 14025

DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804

EN 15804:2012-04: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR 2011, Part B

Institut Bauen und Umwelt e.V., Königswinter (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations of Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD for floor coverings, V1.3, April 2013 www.bau-umwelt.de

EN 14041

DIN EN 14041: 2008-05: Resilient, textile and laminate floor coverings

ISO 10874

DIN EN ISO 10874: 2012-04: Resilient, textile and laminate floor coverings - Classification

BNB:

Bundesinstitut für Bau-, Stadt- und Raumforschung im Bundesamt für Bauwesen und Raumforschung: Nutzungsdauern von Bauteilen für Lebenszyklusanalysen nach Bewertungssystem Nachhaltiges Bauen, Stand 11/2011

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@bau-umwelt.com www.bau-umwelt.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@bau-umwelt.com www.bau-umwelt.com
CARPETS AND THE FORMER	Author of the Life Cycle Assessment Gemeinschaft umweltfreundlicher Teppichboden (GUT) e.V. Schönebergstraße 2 52068 Aachen Germany	Tel Fax Mail Web	+45 (0)241 96843 410 +45 (0)241 96843 400 mail@gut-ev.de www.gut-ev.org
VORWERK	Owner of the Declaration Vorwerk & Co. Teppichwerke GmbH & Co.KG Kuhlmannstraße 11 31785 Hameln Germany	Tel Fax Mail Web	+49 (0)5151 103 0 +49 (0)5151 103 377 info@vorwerk-teppich.de www.vorwerk-teppich.de